Fluid Mechanics Key Equations [In progress]
\[\newcommand{\evec}[1]{\mathbf{e}_{#1}}\]
-
Streamline: a line along which the velocity is constant: \(\frac{dx}{v_x} = \frac{dy}{v_y} = \frac{dy}{v_y}\)
-
Stream function : a value that is constant along a streamline
\[\text{2D}: v_x = \frac{\partial phi}{\partial y}, v_y = -\frac{\partial phi}{\partial x}\] -
Steady flow: $\frac{\partial v}{\partial t} = 0$
-
Inviscid flow: $\nabla \tau = \nabla\cdot(-p\mathbf{I}) = -\nabla$
-
Incompressible flow: $\frac{-1}{\rho}\frac{D\rho}{Dt} = 0$
-
Volumetric strain rate: $\nabla \cdot \mathbf{v}$
-
Conservation of mass:
\[\frac{-1}{\rho}\frac{D\rho}{Dt} = \nabla \cdot \mathbf{v}\] -
Conservation of mass, incompressible flow
\[\frac{-1}{\rho}\frac{D\rho}{Dt} = 0 \Longleftrightarrow \nabla \cdot \mathbf{v} = 0\] -
Conservation of momentum
\[\rho\frac{D\rho}{Dt} = \nabla \cdot \tau + \rho g\] -
Conservation of momentum, inviscid flow (Euler equation)
\[\nabla \tau = \nabla\cdot(-p\mathbf{I}) = -\nabla \\ \rho\frac{D\rho}{Dt} = -\nabla p + \rho g\] -
Euler equation, hydrostatics
\[\frac{D\rho}{Dt} = 0 \\ \nabla p = \rho g\] -
Archimedes principle (can be derived using Euler equation for hydrostatics)
\[F_B = -\text{mass of displaced fluid} \times \mathbf{g}\] -
Bernouilli equation, steady flow, invisicid flow
- Streamline coordinates, integral: $\evec{s}$
- Integral form (usually seen)
- Differential form
- Normal to streamline: $\evec{n}$:
- Binormal to streamline: $\evec{l} = \evec{n} \times \evec{s}$
- Streamline coordinates, integral: $\evec{s}$